VBIO

Verdanken wir das Leben auf der Erde dem kosmischen Staub?

Ein Asteroid zerbricht und produziert dabei Staub, der auch auf die Erde gelangt.
Ein Asteroid zerbricht und produziert dabei Staub, der auch auf die Erde gelangt. Nasa / JPL-​Caltech

Staub aus dem All, der sich in Schmelzlöchern von Eisschilden angesammelt hat, könnte in der Frühzeit der Erde die präbiotische Chemie in Gang gesetzt und am Laufen gehalten haben. Mit einem Computermodell haben Forschende der ETH Zürich und der Universität Cambridge dieses Szenario überprüft.

Bevor es Leben auf der Erde gab, brauchte es die Chemie, welche aus den chemischen Elementen Stickstoff, Schwefel, Kohlenstoff und Phosphor organische Moleküle bildete. Damit die entsprechenden chemischen Reaktionen starten und aufrechterhalten bleiben konnten, brauchte es diese Elemente im Überfluss – und einen ständigen Nachschub. Auf der Erde selbst waren und sind diese jedoch Mangelware.

Tatsächlich waren die elementaren Bausteine des Lebens so selten, dass chemische Reaktionen sich schnell erschöpft hätten, wenn sie denn überhaupt in Gang gekommen wären. Auch geologische Prozesse wie Erosion und Verwitterung des irdischen Ausgangsgesteins konnten nicht für ausreichenden Nachschub sorgen, da die Erdkruste schlicht zu wenig dieser Elemente enthielt. Dennoch entwickelte sich in den ersten 500 Millionen Jahren der Erdgeschichte eine präbiotische Chemie, die organische Moleküle wie die RNA, DNA, Fettsäuren oder Proteine hervorbrachte, auf denen alles Leben beruht.

Zutaten aus dem All?

Woher kamen Schwefel, Phosphor, Stick-​ und Kohlenstoff in der benötigten Menge? Der ETH-Forscher Craig Walton ist davon überzeugt, dass diese Elemente vor allem durch kosmischen Staub auf die Erde gelangt sind.

Dieser Staub entsteht im Weltraum, zum Beispiel, wenn Asteroiden miteinander kollidieren. Auch heute noch fallen rund 30'000 Tonnen Staub aus dem All auf die Erde. In der Frühzeit der Erde dagegen war der Staubregen mit jährlichen Millionen Tonnen viel grösser. Vor allem aber enthalten die Staubteilchen viel Stickstoff, Kohlenstoff, Schwefel und Phosphor. Sie hätten also das Potenzial dazu, eine chemische Kaskade in Gang zu setzen.

Dagegen spricht jedoch, dass der Staub weit verstreut niedergeht und lokal in sehr kleinen Mengen vorhanden ist. «Wenn man aber Transportprozesse einbezieht, sieht die Sache anders aus», sagt Walton. Wind, Regen oder Flüsse sammeln den kosmischen Staub grossräumig ein und lagern ihn konzentriert an bestimmten Orten ab.

Neues Modell soll Frage klären

Um herauszufinden, ob kosmischer Staub eine mögliche Starthilfe und Quelle für präbiotische Chemie(-reaktionen) sein könnte, hat Walton zusammen mit Kollegen der Universität Cambridge (UK) ein Modell entwickelt.

Damit simulierten die Forschenden, wie viel kosmischer Staub in den ersten 500 Millionen Jahren der Erdgeschichte auf die Erde niederging und an welchen Orten er sich auf der Erdoberfläche angesammelt haben könnte. Die Studie wurde jetzt in der Fachzeitschrift Nature Astronomy veröffentlicht.

Das Modell entstand in Zusammenarbeit mit Sedimentationsexpert:innen und Astrophysiker:innen der Universität Cambridge. Die britischen Forscher:innen sind auf die Simulation von Planeten-​ und Asteroidensystemen spezialisiert.

Die Simulationen zeigen, dass es auf der frühen Erde Orte mit einer extrem hohen Konzentration an kosmischem Staub gegeben haben könnte. Und dass ständig Nachschub aus dem All kam. Allerdings nahm der Staubregen nach der Entstehung der Erde schnell und stark ab: Nach 500 Millionen Jahren war der Staubfluss um eine Grössenordnung kleiner als im Jahr Null. Gelegentliche Ausschläge nach oben führen die Forschenden auf Asteroiden zurück, die auseinanderbrachen und einen Staubschweif zur Erde schickten.

Schmelzlöcher auf Eisschilden als Staubfänger

Die meisten Wissenschaftler:innen, aber auch Laien gehen davon aus, dass die Erde Millionen von Jahren von einem Magmaozean bedeckt war, was Transport und Ablagerung von kosmischem Staub für lange Zeit verhindert hätte. «Neuere Forschung hat jedoch Hinweise darauf gefunden, dass sich die Erdoberfläche sehr rasch abgekühlt und verfestigt hat und sich grosse Eisschilde gebildet haben», sagt Walton.

Diese Eisschilde könnten den Simulationen zufolge die beste Umgebung für die Ansammlung von kosmischem Staub gewesen sein. In sogenannten Kryokonit-​Löchern – Schmelzlöchern auf der Gletscheroberfläche – sammelten sich nicht nur Sedimente, sondern auch die Staubkörner aus dem All.

Aus den Staubpartikeln lösten sich mit der Zeit die entsprechenden Elemente heraus. Sobald deren Konzentration im Gletscherwasser einen kritischen Schwellenwert erreichte, setzten von selbst chemische Reaktionen ein, die zur Bildung der organischen Moleküle am Ursprung des Lebens führten.

Dass auch bei eisigen Temperaturen, wie sie in den Schmelzlöchern herrschen, chemische Prozesse in Gang kommen, ist durchaus möglich: «Kälte schadet der organischen Chemie nicht, im Gegenteil. Reaktionen laufen bei niedrigen Temperaturen selektiver und spezifischer ab als bei hohen», sagt Walton. Andere Forscher haben im Labor gezeigt, dass sich in solchen Schmelzwasser-​Ursuppen bei Temperaturen um den Gefrierpunkt spontan einfache ringförmige Ribonukleinsäuren (RNA) bilden, die sich selbst vervielfältigen. Ein Schwachpunkt in der Argumentation könnte sein, dass sich bei tiefen Temperaturen, die zum Aufbau der organischen Moleküle benötigten Elemente nur sehr langsam aus den Staubteilchen lösen.

Debatte über den Ursprung des Lebens anstossen

Die Theorie, die der Nomis-​Fellow vertritt, ist in der Wissenschaft nicht unumstritten. «Diese Studie wird sicherlich eine kontroverse wissenschaftliche Debatte auslösen», ist Walton überzeugt. «Und sie wird neue Ideen über den Ursprung des Lebens hervorbringen.»

Schon im 18. und 19. Jahrhundert waren Wissenschaftler davon überzeugt, dass Meteoriten die «Elemente des Lebens», wie Walton sie nennt, auf die Erde gebracht haben. Denn schon damals fanden Forscher in Gesteinsbrocken aus dem All diese Elemente des Lebens in grossen Mengen, nicht aber in den Grundgesteinen der Erde. «Seither hat sich aber kaum jemand mit der Idee auseinandergesetzt, dass eine präbiotische Chemie vor allem durch den Eintrag von Meteoriten in Gang gekommen ist», sagt der Geologe.

«Die Meteoriten-​Idee klingt interessant, hat aber einen Haken», erklärt Walton. Ein einzelner Meteorit liefere diese Stoffe nur in einem begrenzten Umfeld, und wo er aufschlage, sei zufällig und der weitere Nachschub sei nicht gewährleistet. «Ich halte es für unwahrscheinlich, dass der Ursprung des Lebens von ein paar weit und zufällig verstreuten Gesteinsbrocken abhängt», sagt er. «Angereicherter kosmischer Staub hingegen halte ich für eine plausible Quelle.»

In einem nächsten Schritt will er seine Theorie experimentell überprüfen. Im Labor wird er in grossen Reaktionsgefässen die Bedingungen nachstellen, die in den urzeitlichen Schmelzlöchern geherrscht haben könnten. Er wird dabei die Anfangsbedingungen so einstellen, wie sie vor vier Milliarden Jahren in einem Kryokonit-Loch vermutlich vorkamen – und dann abwarten, ob sich chemische Reaktionen entwickeln, die biologisch relevante Moleküle hervorbringen.

ETH Zürich


Originalpublikation:

Walton, C.R., Rigley, J.K., Lipp, A. et al. Cosmic dust fertilization of glacial prebiotic chemistry on early Earth. Nat Astron (2024). doi.org/10.1038/s41550-024-02212-z