Dieser Proteinkomplex mit der Bezeichnung „Mon1/Ccz1“ bestimmt, welche intrazellulären Vesikel ihren Inhalt an den zellulären „Recyclinghof“, das Lysosom, liefern. Dazu dockt er an die Vesikelmembran an und ergänzt dort eine Markierung. Intrazelluläre Vesikel sind Membranbläschen, die Material durch die Zelle transportieren. Im Lysosom wird ihr Inhalt abgebaut und wiederverwertet. Durch die Aufklärung der Struktur in nahezu atomarer Auflösung konnten die Forscher nun unter anderem klären, wie der Proteinkomplex die passenden Vesikel erkennt. So zeigten sie zum Beispiel, dass der Komplex einen positiv geladenen, relativ flachen Bereich hat, der seine Orientierung nach dem Andocken an die Vesikelmembran bestimmt.
„Mon1/Ccz1 gehört zu einer Familie von Regulatoren, für die bisher keine strukturellen Informationen vorliegen. Diese Komplexe sind in vielfältige zelluläre Vorgänge eingebunden und teilweise auch mit dem Auftreten von Entwicklungsstörungen wie Albinismus und Blutgerinnungsdefekten assoziiert“, unterstreicht Daniel Kümmel. „Unsere Struktur liefert nun eine Grundlage, um diese Zusammenhänge besser zu verstehen.“
Der untersuchte Proteinkomplex stammt aus dem Fadenpilz Chaetomium thermophilum und ist unter Laborbedingungen besonders leicht zu handhaben und stabil. Er kann als Modell für die humanen Proteine dienen. Zur Bestimmung der Proteinstruktur setzten die Wissenschaftler hochauflösende Kryoelektronenmikroskopie ein. „Mit dieser Methode können wir die Struktur von Proteinen bei Temperaturen um minus 150 Grad Celsius im nahezu natürlichen Zustand untersuchen“, sagt Stefan Raunser. Die Forscher überprüften ihre Ergebnisse durch biochemische Untersuchungen, beispielsweise Sedimentationsessays. Dabei wird die Protein-Membran-Interaktion mit künstlichen Vesikeln und gereinigtem Protein in vitro, also außerhalb des Organismus, nachgewiesen. „Die Struktur von Mon1/Ccz1 hat eine einzigartige Architektur, die nach unserem aktuellen Wissensstand noch in keinem anderen Proteinkomplex nachgewiesen worden ist. Sie könnte als Blaupause für ein besseres Verständnis andere verwandter Regulatorproteine dienen. Wir wollen unsere erfolgreiche Zusammenarbeit fortsetzen“, sind sich Daniel Kümmel und Stefan Raunser einig.
WWU Münster
Originalpublikation:
Björn U. Klink, Eric Herrmann, Claudia Antonia, Lars Langemeyer, Stephan Kiontke, Christos Gatsogiannis, Christian Ungermann, Stefan Raunser, Daniel Kümmel: Structure of the Mon1-Ccz1 complex reveals molecular basis of membrane binding for Rab7 activation. PNAS February 8, 2022 119 (6), DOI: https://www.pnas.org/content/119/6/e2121494119