Kalium gehört zu den Nährstoffen, die von Pflanzen in größeren Mengen benötigt werden. Im Boden kann die Menge von Kalium aber stark schwanken: Kaliumarme Böden können bis zu tausend Mal weniger von diesem Nährstoff enthalten als kaliumreiche Böden. Um flexibel auf diese Unterschiede reagieren zu können, haben Pflanzen Mechanismen entwickelt, mit denen sie ihre Kalium-Aufnahme an den jeweiligen Bodenzustand anpassen.
Wie die Zellen des menschlichen Körpers arbeiten auch Pflanzenzellen mit einer Betriebskaliumkonzentration von etwa 100 Millimolar. Wenn die Wurzeln eine Kaliumquelle mit einer deutlich niedrigeren Konzentration oder nur in Spuren auftun, können sie das Kalium nur unter Energieaufwand in ihre Zellen aufnehmen. Das gelingt ihnen im Zusammenspiel des Kalium-Ionenkanals AKT1 mit dem Kalium-Transporter HAK5.
Forschung ist relevant für die Pflanzenzüchtung
„Obwohl HAK5 schon seit Ende der 1990er-Jahre bekannt ist, blieb sein Transportmechanismus bislang weitgehend unverstanden“, sagt Professor Rainer Hedrich von der Julius-Maximilians-Universität (JMU) Würzburg. Diesen Mechanismus wollte ein Team um den Würzburger Biophysiker nun aufklären: „Das Wissen darüber ist wichtig, wenn es darum geht, Kulturpflanzen zu züchten, die auch auf nicht- oder nur schwach gedüngten Äckern Ertrag bringen, also mit weniger Düngemitteln auskommen.“
Bei ihren Experimenten kam der Würzburger Forschungsgruppe um die Erstautoren Tobias Maierhofer und Sönke Scherzer ihre weitreichende Erfahrung mit dem Kalium-Kanal AKT1 zugute. Im Journal Nature Communications beschreibt die Gruppe ihre Ergebnisse nun im Detail.
Aufbau eines pH-Gradienten kostet Energie
Damit der Kanal AKT1 Kalium in die Zellen transportieren kann, sind höhere Bodenkaliumkonzentrationen nötig. Als Energiequelle reicht das normale elektrische Feld der Zellmembran dafür aus. Der Transporter HAK5 arbeitet dagegen schon bei niedrigen Bodenkaliumwerten. Er braucht zusätzlich zum elektrischen Feld die Energie eines pH-Gradienten. Diesen muss die Pflanze extra über die Zellmembranen hinweg aufbauen, und das kostet Energie.
Weitere Experimente ergaben, dass bei schwankender Kaliumkonzentration im Boden der Kalium-Transporter HAK5 und der Kaliumkanal AKT1 in energiesparender Weise zusammenarbeiten.
Transporter muss einen Kalium-Sensor haben
Bei hohen Konzentrationen wird der energiefressende Transporter HAK5 abgeschaltet. Das bedeutet, dass der Transporter über einen Kalium-Sensor verfügen muss. Auf der Suche nach dem Sensor kamen die Frankfurter Strukturbiologin Inga Hänelt und ihr Würzburger Kollege Thomas Müller weiter: Sie fanden eine Mutante des Transporters, bei der die Affinität zu Kalium 100-fach niedriger ist.
„Jetzt gilt es, die molekularen Reaktionen, welche die Mutation in Gang setzt, genauer auszuloten“, beschreibt Rainer Hedrich die nächsten Forschungsziele. Außerdem gehe es darum zu erkunden, wie der Kaliumtransport in die Wurzelzelle mechanisch und energetisch an den Protonen-Transport gekoppelt ist.
Universität Würzburg
Originalpublikation:
Maierhofer, T., Scherzer, S., Carpaneto, A. et al. Arabidopsis HAK5 under low K+ availability operates as PMF powered high-affinity K+ transporter. Nat Commun15, 8558 (2024). doi.org/10.1038/s41467-024-52963-6