Dr. Demi Iftime und Dr. Martina Adamek führten das interdisziplinäre Projekt unter Leitung von Professorin Evi Stegmann und Professorin Nadine Ziemert vom Exzellenzcluster „Kontrolle von Mikroorganismen zur Bekämpfung von Infektionen“ der Universität Tübingen durch, unterstützt von Professor Max Cryle und Dr. Mathias Hansen von der Monash University in Australien. Die Forscherinnen und Forscher ermittelten mithilfe bioinformatischer Methoden, wie die chemische Zusammensetzung des Vorläufers heutiger Glykopeptid-Antibiotika ausgesehen haben könnte und wie dieser durch Evolution umgeformt wurde. Daraus gewinnen sie Erkenntnisse, wie heutige Antibiotika für die medizinische Nutzung weiterentwickelt werden könnten.
Ermittlung eines Stammbaums
„Antibiotika sind ursprünglich vor allem die Produkte einer stetigen evolutionären Auseinandersetzung zwischen verschiedenen Organismen, die jeweils versuchen, ihre Konkurrenten oder Gegner zu vernichten oder zumindest an der Ausbreitung zu hindern“, erklärt Evi Stegmann. In seiner Studie hat das Forschungsteam Teicoplanin und Vancomycin sowie eine Reihe von ähnlich strukturieren Antibiotika als Ausgangsstoffe herangezogen. Die Naturstoffe können jeweils aus bestimmten Bakterienstämmen isoliert werden. Wie der Name Glykopeptid-Antibiotika beschreibt, bestehen sie chemisch gesehen aus Aminosäuren und Zuckern. Sie lassen Bakterien absterben, indem sie deren Zellwandaufbau verhindern. In dieser Weise wirken Teicoplanin und Vancomycin auch gegen zahlreiche Krankheitserreger des Menschen.
In biologischen Verwandtschaftsanalysen werden meist verschiedene Arten in eine Baumstruktur gestellt, in der die Verzweigungen Auskunft über den Verwandtschaftsgrad geben. „Wir haben in ganz ähnlicher Weise die bekannten Glykopeptid-Antibiotika mit ihrer chemischen Struktur, kodiert über die Gencluster, die ihre Baupläne enthalten, in einen solchen Abstammungsbaum gesetzt“, sagt Ziemert. „Über Computeralgorithmen aus der Bioinformatik lässt sich sozusagen am Stamm des Baumes eine mutmaßliche Urform der Antibiotika errechnen.“ Diesen hypothetischen Vorläufer tauften sie Paleomycin. Das Forschungsteam baute die ermittelten Gene zusammen, welche die Bio-synthese von Paleomycin bereits kodiert haben dürften, und ließ ein Bakterium den entsprechenden Stoff produzieren – tatsächlich hatte Paleomycin im Test antibiotische Wirkung. „Es war sehr aufregend, ein solch uraltes Molekül zu erschaffen, als würde man einen Dinosaurier oder ein Wollhaarmammut wieder zum Leben erwecken“, berichtet die Forscherin.
Vereinfachung der Struktur
„Als Ergebnis ist für uns zum einen interessant, dass nach den Berechnungen alle Glykopeptid-Antibiotika von einem einzelnen Vorläufer abstammen“, sagt Stegmann. „Zum anderen ergab sich, dass Paleomycin im Kern des Moleküls eine ähnlich komplexe Peptidstruktur aufweist wie Teicopla-nin.“ Bei Vancomycin sei diese Kernstruktur demgegenüber vereinfacht. „Wir gehen davon aus, dass sich diese Vereinfachung erst in der jüngeren Evolution ergeben hat. Die Funktionsweise als Antibiotikum blieb jedoch mit dem gleichen Mechanismus erhalten“, sagt Ziemert. „Für die Bakterien, die solche Antibiotika bilden, können diese sehr nützlich sein. Doch handelt es sich um Stoffe mit einer aufwendigen chemischen Struktur, die das Bakterium viel Energie kosten. Eine Vereinfachung bei gleicher Funktion könnte einen evolutionären Vorteil bieten.“
Dem Stammbaum der verschiedenen Glykopeptid-Antibiotika stellten die Forscherinnen und Forscher einen Stammbaum der diese produzierenden Bakterienstämme gegenüber. Ausgehend von Paleomycin vollzogen sie die Veränderungen in der chemischen Struktur der Antibiotika – beziehungsweise die der unterliegenden Gencluster in den Bakterien – minutiös und Schritt für Schritt nach. Dabei stellten sie fest, welche Schlüsselschritte ungefähr gleichzeitig stattfinden müssen, um ein funktionelles Molekül entstehen zu lassen. Einige dieser Schritte konnten von den Wissenschaftlern in Australien im Labor biochemisch nachvollzogen werden. „Aus dieser Zeitreise erhielten wir tiefgehende Einblicke in die Evolution der Stoffwechselwege der Antibiotikaproduktion in den Bakterien und die Optimierungsstrategien der Natur, die zu den modernen Glykopeptid-Antibiotika führten“, sagt Ziemert. „Dadurch haben wir eine Grundlage, um diese wichtige Antibiotikagruppe mit technischen Methoden weiterzuentwickeln.“
Universität Tübingen
Originalpublikation:
Mathias Hansen, Martina Adamek, Dumitrita Iftime, Daniel Petras, Frauke Schuseil, Stephanie Grond, Evi Stegmann, Max Cryle and Nadine Ziemert: Resurrecting Ancestral Antibiotics: Unveiling the Origins of Modern Lipid II Targeting Glycopeptides. Nature Communications, https://doi.org/10.1038/s41467-023-43451-4