News Detailansicht

Biophysik - Mustergültige Zellgeometrie

Die richtige Verteilung von Proteinen in der Zelle ist für viele Lebensprozesse entscheidend. LMU-Wissenschaftler haben ein neues Modell entwickelt, wie diese Muster entstehen. Ein wichtiger Faktor ist die Form der Zelle.

Das gestreifte Fell des Zebras, gebänderte Muschelschalen oder auch die Anordnung reifer Kerne in der Sonnenblume sind offensichtliche Beispiele für natürliche Muster. Auch auf zellulärer Ebene kommt es zur Musterbildung – und diese biologischen Muster sind für viele Lebensvorgänge essenziell: Innerhalb einzelner Zellen legt die Verteilung bestimmter Proteine – das Proteinmuster – beispielsweise fest, an welcher Stelle die Mutterzelle geteilt wird. Wissenschaftler um den LMU-Physiker Professor Erwin Frey haben nun mithilfe von Computersimulationen untersucht, wie sich solche Proteinmuster in Bakterienzellen bilden können. Dabei haben sie einen neuen Mechanismus entdeckt, der auf grundlegenden biochemischen Reaktionen beruht und stabile Muster erzeugt. Über ihre Ergebnisse berichten die Wissenschaftler im Fachmagazin PNAS.

„Wir haben die Musterbildung am Beispiel des stäbchenförmigen Bakteriums E.coli simuliert“, sagt Frey. E.coli-Zellen teilen sich mit erstaunlicher Präzision in der Mitte ihrer Längsachse. Maßgeblich daran beteiligt sind die sogenannten Min-Proteine MinC, MinD und MinE, die zwischen den beiden Enden der Zelle hin und her strömen. Angetrieben wird der Pendelverkehr von einem komplexen Wechselspiel der beiden Min-Proteine MinD und MinE, in dessen Verlauf Komplexe dieser Proteine an die Zellmembran binden und sich aufgrund spezifischer biochemischer Reaktionen wieder lösen. Das Min-System erzeugt ein bipolares Muster, bei dem die Proteinkonzentration an den Zellpolen höher ist als in der Mitte. Dadurch wird die Teilung in der Nähe der Zellpole verhindert, aber nicht in der Mitte der Zelle.

Bindung am Stäbchenende bevorzugt

Die Wissenschaftler haben nun ein Modell entwickelt, in dem ein solches bipolares Muster durch ein einziges Protein – AtMinD – erzeugt wird: „Grundlage dafür waren experimentelle Beobachtungen, die zeigten, dass E.coli-Mutanten, in denen MinD und MinE durch das homologe Protein AtMinD aus den Choloroplasten der Gänserauke ersetzt werden, ebenfalls ein bipolares Muster bilden“, sagt Frey. AtMinD kommt in zwei Formen vor, die beide an die Zellmembran binden können. Die Musterbildung durch AtMinD-Proteine basiert wie bei den Min-Proteinen darauf, dass diese abwechselnd an die Zellmembran binden und sich wieder ablösen, wobei vergleichbare biochemische Reaktionen wie beim E. coli Min-System ablaufen.

„In unserem minimalen Modell beruht die Musterbildung auf dem Massenwirkungsgesetz und wird durch die unterschiedlichen Membranaffinitäten der beiden Formen von AtMinD gesteuert. Dabei spielt die Geometrie der Zelle eine große Rolle, wie wir zeigen konnten“, sagt Frey: Die Wahrscheinlichkeit, dass ein im Zellinneren diffundierendes Protein auf die Zellmembran trifft und an sie binden kann, ist umso größer, je mehr Membranfläche das Protein erreichen kann – bei stäbchenförmigen Bakterien ist das wegen der Krümmung der Membran am Stäbchenende in der Nähe der beiden Pole der Fall. Deshalb binden dort die meisten Proteine und es entsteht ein bipolares Muster. Gingen die Wissenschaftler von einer kugelförmigen Zelle aus, verschwand die Polarität. „Im Unterschied zu früheren Theorien setzt das neue Modell nicht voraus, dass Proteine den Grad der Zellmembrankrümmung erkennen, und es müssen auch keine Reaktionsraten angepasst werden“, erklärt Frey. „Damit unterscheidet sich unser Modell ganz grundlegend von dem berühmten Turing-Mechanismus für Musterbildung und hat das Potenzial, eine völlig neue Sichtweise über Musterbildung in biologischen Systemen einzuführen.“

Als nächstes Ziel haben sich die Wissenschaftler vorgenommen, nach weiteren ähnlich einfachen Systemen zu suchen. „Wenn es gelingt, solche Systeme nachzubauen, könnte man verschiedene Minimal-Module zusammenfügen und so Schritt für Schritt diverse wichtige zelluläre Funktionen nachstellen – langfristig könnte dies zur Entwicklung einer ,künstlichen Zelle‘ beitragen, die hilft, komplexe biologische Prozesse besser zu verstehen“, schließt Frey.


*****

Dominik Thalmeier, Jacob Halatek, and Erwin Frey: Geometry-induced protein pattern formation
PNAS 2016, doi: 10.1073/pnas.1515191113
Ludwig-Maximilians-Universität München
http://www.pnas.org/content/early/2016/01/05/1515191113.abstract

14.01.2016

 

 
top